Superior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries
نویسندگان
چکیده
ont matter & 2013 0.1016/j.nanoen.2 thor. Tel.: +1 301 uthor. Tel.: +1 30 : [email protected] (M . Wang). ntributed equally Abstract Mesoporous Fe2O3 spherical particles with amorphous or crystalline structure were prepared at different temperatures using aerosol spray pyrolysis. The crystalline Fe2O3 (C-Fe2O3) anodes pyrolysized at 800 1C show better electrochemical performance than the amorphous Fe2O3 (A-Fe2O3) pyrolysized at 600 1C. Both, however, changed into nano-crystallite porous structure after charge/discharge cycles. The C-Fe2O3 spherical particles provided high reversible capacity of 800 mAh/g at 0.5 C over 300 charge/discharge cycles and retained 300 mAh/g at 10 C. The excellent cycling stability of the C-Fe2O3 spherical particles is mainly attributed to the interior voids in the mesoporous Fe2O3 particles that provide extra space to accommodate volume change and alleviate structural strain/stress during electrochemical reaction. The high rate performance of mesoporous Fe2O3 is attributed to (1) fast charge transfer reaction at the large interfacial area between electrode and liquid electrolyte, and (2) the reduced Li-ion diffusion distances. This study not only provides a simple synthesis method for lithium ion batteries, but also helps in designing novel and high performance electrode materials. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملSystematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes
α-Fe2O3 nanomaterials with an elongated nanorod morphology exhibiting superior electrochemical performance were obtained through hydrothermal synthesis assisted by diamine derivatives as shape-controlling agents (SCAs) for application as anodes in lithium-ion batteries (LIBs). The physicochemical characteristics were investigated via XRD and FESEM, revealing well-crystallized α-Fe2O3 with adjus...
متن کاملElectrochemical Performance of Porous Carbon/Tin Composite Anodes for SodiumIon and LithiumIon Batteries
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na-ion and Li-ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na-ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li-ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The ...
متن کاملNano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries.
Iron oxides are extensively investigated as anode materials for lithium-ion batteries (LIBs) because of their large specific capacities. However, they undergo huge volume changes during cycling that result in anode pulverization and loss of electrical connectivity. As a result, the capacity retention of the iron oxide anodes is poor and should be improved for commercial applications. Herein, we...
متن کاملConductive Additive for Si/Mesoporous Carbon Anode for Li-Ion Batteries: Commercial Graphite vs Super C65 Arlavinda Rezqita
Silicon is a promising candidate for anodes in lithium-ion batteries (LIB) due to its high theoretical capacity. However, Si has low electrical conductivity (theoretical: 6.7 x 10 S cm). Proper conductive additive is needed in order to improve the electrical conductivity of Si-based anodes. Here we focus on applying two commercial conductive addictives: graphite and carbon black Super C65 for s...
متن کامل